Structure-activity relationship studies on derivatives of eudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults.
نویسندگان
چکیده
An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds, two eudesmanolides, alantolactone, and isoalantolactone showed larvicidal activities against Ae. aegypti and, therefore, were chosen for further structure-activity relationship study. In this study, structural modifications were performed on both alantolactone and isoalantolactone in an effort to understand the functional groups necessary for maintaining and/or increasing its activity, and to possibly lead to more effective insect-control agents. All parent compounds and synthetic modification reaction products were evaluated for their toxic activities against Ae. aegypti larvae and adults. Structure modifications included epoxidations, reductions, catalytic hydrogenations, and Michael additions to the alpha,beta-unsaturated lactones. None of the synthetic isomers synthesized and screened against Ae. aegypti larvae were more active than isoalantolactone itself which had an LC(50) value of 10.0 microg/ml. This was not the case for analogs of alantolactone for which many of the analogs had larvicidal activities ranging from 12.4 to 69.9 microg/ml. In general, activity trends observed from Ae. aegypti larval screening were not consistent with observations from adulticidal screening. The propylamine Michael addition analog of alantolactone was the most active adulticide synthesized with an LC(50) value of 1.07 microg/mosquito. In addition, the crystal structures of both alantolactone and isoalantolactone were determined using CuK(alpha) radiation, which allowed their absolute configurations to be determined based on resonant scattering of the light atoms.
منابع مشابه
Characterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: A study in Khyber Pakhtunkhwa, Pakistan
Dengue is a vector-borne disease caused by dengue virus. According to the recent report of CDC that one-third population of the world are at high risk with Dengue fever. The prevalence of the dengue hemorrhagic fever was found more in tropical and sub-tropical regions of the world. Aedes mosquitoes was reported as the main cause of transmission of dengue virus. So the current study was planned ...
متن کاملSynthesis and Chemometrics of Thymol and Carvacrol Derivatives as Larvicides against Aedes aegypti
BACKGROUND Thymol and carvacrol have previously demonstrated larvicidal activity against Aedes aegypti (Diptera: Culicidae). In view of this fact, it was of our interest to obtain synthetic derivatives and evaluate their larvicidal activity on Ae. aegypti larvae. METHODS Structural modifications were performed on thymol and carvacrol in an effort to understand the functional groups necessary ...
متن کاملPhylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia
Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...
متن کاملInsecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides.
Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.18...
متن کاملStructure-activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae).
Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of both dengue and yellow fever. Use of insecticides is one of the primary ways to control this medically important insect pest. However, few new insecticides have been developed for mosquito control in recent years. As a part of our collaborative effort to search for new insecticides to control mosquitoes, piperidine was used as bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry & biodiversity
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2010